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Nonlinear model of intramolecular excitations on a multileg ladder lattice

Oleksiy O. Vakhnenko*
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The exactly integrable model of nonlinear intramolecular excitations on a multileg ladder lattice is proposed.
Since it is rather general, the model permits a number of physically interesting ramifications related to the
striplike and the bunchlike biological and condensed matter systems as well as to the arrays of linearly and
nonlinearly coupled optical fibers. The principal possibility to model an external magnetic field parallel to the
ladder legs within the framework of inverse scattering transform is pointed out. The one-soliton solutions of
two-leg and three-leg ladder models are found and analyzed. Apart from the spatially constricted translational
mode typical to the traditional one-chain soliton, the interchain beating mode as well as the circular traveling
modes redistributing the excitations between the chains are revealed in complete accordance with liner limits.
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The models of a nonlinear Schro¨dinger type have played
an exceptional role in physical applications already for m
than three decades. They arise in rather different phys
systems where the balance between dispersion and no
earity produces the fundamental entity known as a solit
The scope of such models stretches from the transport
nomena in low-dimensional biological@1–3# and condensed
matter@3–6# systems to two-dimensional self-focussing@7,8#
and one-dimensional self-modulation@7# of light in nonlinear
media to say nothing of light pulse propagation in optic
fibers @9,10# and electric pulse propagation in nonline
transmission lines@11#. The most intriguing ones are th
multicomponent nonlinear models supporting linear@12,13#
or nonlinear@8,9,14# couplings between their componen
thereby prompting rather sophisticated effects of mode-m
interactions. However, as a rule only some of them are in
grable and in particular those admitting equal contributio
from cross-phase and self-phase modulation effects@8#.
Here, apart from the well-known Manakov model@8#, which
has served as an integrable model for the so-called inco
ent solitons, it is worthwhile to mention that its discretiz
multicomponent versions just recently appeared in the lite
ture @15,16#. Though being rare ones the integrable mod
when chosen appropriately are often used to be good
approximations as applied to real physical systems@17–20#.
At last in the papers@21–24# a number of fairly genera
two-component models closely related to different physi
situations have been considered. Among them we would
to stress those dealing with the linear and nonlinear in
component couplings combined@21–23# as the most direc
continuous prototypes of discrete multicomponent nonlin
integrable model has to be presented in this Rapid Com
nication.

Thus, the main reason of our activity is to develop a d
crete nonlinear integrable model pretending to be a zero
proximation at least for such known physically motivat
models as arrays of tunnel-coupled nonlinear optical fib
@25–27# or models for transport of excitation energy a
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charge in transversely coupled biological macromolecu
@1–3#. Forestalling, in some respect the model has even
passed our expectations though its nonlinear terms turned
to be somewhat artificial, as it usually occurred with oth
discrete integrable nonlinear models@15,16,28#. We will dis-
cuss all these aspects in context of each particular proper
the model of interest.

For the sake of definiteness we will follow here the te
minology of nonlinear transport phenomena and presc
the quantitiesqa(n) and r a(n) to be the excitation ampli-
tudes of molecule sited onath chain andnth unit cell. The
longitudinal numerical coordinaten is supposed to run from
minus to plus infinity, whereas the transverse onea from
unity to the number of chains~legs! M. The exactly inte-
grable evolution model dealing with the nonlinear intram
lecular excitations onM-leg ladder lattice reads as follows

i q̇a~n!1 (
b51

M

tabqb~n!1@qa~n11!1qa~n21!#

3F11 (
b51

M

qb~n!r b~n!G
5 (

b51

M

@qa~n21!qb~n!2qa~n!qb~n21!#r b~n! ~1!

2 i ṙ a~n!1 (
b51

M

r b~n!tba1@r a~n11!1r a~n21!#

3F11 (
b51

M

r b~n!qb~n!G
5 (

b51

M

@r a~n11!r b~n!2r a~n!r b~n11!#qb~n!,

~2!

where a51,2,3, . . . ,M and the interchain linear couplin
constantstab are supposed to be arbitrary for the time bein
Here the dot stands for the derivative with respect to dim
sionless timet.
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Being rather general the model~1! and~2! permits a num-
ber of physically interesting ramifications obtainable
merely imposing appropriate restrictions on the coupl
constantstab . Thus, we are able to model the nonlinear e
citations on a multileg ladder lattice unrolled into the tw
dimensional strip or combined into the three-dimensio
bunch of tightly bound chains. Moreover, we are in a po
tion to apply an external magnetic field parallel to the lad
legs in a way similar to that described by Feynman@29#.

Inspecting the kind of nonlinearity the model~1! and ~2!
possesses we see that it has the thorough physically m
vated justification only in continuous limit when the role
longitudinal localized modes is negligible. Thus, atM52
and the absence of interchain linear couplingstab[0 (a
Þb) we can readily recognize in continuous version of E
~1! and ~2! the famous Manakov model@8#. Nevertheless,
even at intermediate spatial localization when the nonlin
tte
th

,

g
-

l
-
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ti-

.

r

wave packet occupies two or three unit cells the differen
between the physical and modeled nonlinearities can be
sonably taken into account by the perturbation techniq
similar to that developed in our previous works@17,18#. For
example, the parameters of Peierls-Nabarro potential re
obtained by means of perturbation theory@17,18# for the
nonlinear Davydov-Kyslukha model@4# turned out to be in
good keeping with those calculated numerically@30#. More-
over, even the so-called intrinsic localized modes@31,32,18#
have actually been described at first within the framework
the perturbation theory@17#. Of course, the effects of stron
localization should be treated within the framework of oth
approaches, e.g. that worked out by the Spatschek’s t
@33,34#.

Before proceeding with some particular cases of o
model ~1! and ~2! we will prove its integrability. Indeed in-
troducing two auxiliary linear operatorsL(nuz) and A(nuz)
as
L~nuz!5S zI F~n!E

EG~n! z21I D , ~3!

A~nuz!5S iz2I 2 iF ~n!EEG~n21!1 iT izF~n!E2 iz21F~n21!E

izEG~n21!2 iz21EG~n! 2 iz22I 1 iEG~n!F~n21!ED , ~4!
-
the
we see that the model~1! and ~2! follows from the zero-
curvature condition

L̇~nuz!5A~n11uz!L~nuz!2L~nuz!A~nuz!, ~5!

thereby confirming its integrability. Here the quantitiesI, E,
T, andF(n), G(n) stand forM3M submatrixes defined by

I[@ I ab#5@dab#, ~6!

E[@Eab#5@1#, ~7!

T[@ tab#, ~8!

F~n![@Fab~n!#5@ iqa~n!dab#/AM , ~9!

G~n![@Gab~n!#5@ idabr b~n!#/AM . ~10!

A comprehensive analysis handled by the inverse sca
ing transform shows that one-soliton amplitudes cancel
left-hand terms in Eqs.~1! and~2! identically and convert the
initial multileg model~1! and ~2! into the more simple one
r-
e

i q̇a~n!1 (
b51

M

tabqb~n!1@qa~n11!1qa~n21!#

3F11 (
b51

M

qb~n!r b~n!G50, ~11!

2 i ṙ a~n!1 (
b51

M

r b~n!tba1@r a~n11!1r a~n21!#

3F11 (
b51

M

r b~n!qb~n!G50, ~12!

a51,2,3, . . . ,M .

Provided the matrix@ tab# is Hermitian tba[tab* this last
model~11! and~12! gains a direct physical implication inas
much as then its amplitudes could be linked by one of
reductionsr a(n)5qa* (n) or r a(n)52qa* (n). Indeed as far
as the initial Eqs.~1! and ~2! and simplified Eqs.~11! and
~12! conserve the quantity(m52`

` ln@11(b51
M qb(n)rb(n)# we

can introduce the corrected amplitudes

Qa~n!5qa~n!!lnF11 (
b51

M

qb~n!r b~n!G
(
b51

M

qb~n!r b~n!

, ~13!
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Ra~n!5r a~n!!lnF11 (
b51

M

qb~n!r b~n!G
(
b51

M

qb~n!r b~n!

, ~14!

manifesting atr a(n)5qa* (n) all necessary features of prob
ability amplitudes. Of course, both models can be easily
formulated in terms ofQa(n) and Ra(n) should the need
arise.

In what follows we analyze the amplitudes of the on
soliton solution under the restrictionstba5tab* and r a(n)
5qa* (n) ~the reduced amplitudes!,

qa~n!5
aa~t!shm exp@ ipn22i tchm cosp#

A(
b51

M

ab~t!ab* ~t!ch@m~n2x!22t shm sinp#

~15!

r a~n!5qa* ~n!, ~16!

a51,2,3, . . . ,M .

Here m, p, x, andaa(t) are the constant real and time d
pendent complex integration parameters respectively de
mined through the scattering data of auxiliary spectral pr
lem by some one-to-one relations. In particular the quanti
aa(t) should satisfy to the following set of ordinary diffe
ential equations:

ȧa~t!5 i (
b51

M

tabab~t!, a51,2,3, . . . ,M . ~17!

Being the one-soliton ones the amplitudes~15! and ~16! are
applicable to each of models~1!, ~2!, and ~11!, ~12! on an
equal footing.

Let us clarify the meaning of integration paramete
Thus, the coordinatex turns out to be the mean longitudin
coordinate of soliton distribution due to the fact that t
identity

(
a51

M

(
n52`

`

nQa~n!Ra~n!

(
a51

M

(
n52`

`

Qa~n!Ra~n!

[x ~18!

when calculated on the one-soliton amplitudes~15! and~16!
is fulfilled. Further, the quantity 2(shm sinp)/m gives the
soliton longitudinal velocity while the quantity 1/m deter-
mines the typical longitudinal size of soliton distribution. A
last the amplitudesaa(t) (a51,2,3, . . . ,M ) describe the
temporal transverse redistribution of soliton density. Inde
the fraction of one-soliton density located on theath chain in
accordance with Eqs.~15!, ~16!, and~13!, ~14! is found to be

Qa~n!Ra~n!

(
b51

M

Qb~n!Rb~n!

5
aa~t!aa* ~t!

(
b51

M

ab~t!ab* ~t!

[
aa~t!aa* ~t!

(
b51

M

ab~0!ab* ~0!

,

~19!
-

-

r-
-
s

.

,

where the last step has been assisted by the evolution e
tions ~17! and Hermiticy of interchain coupling matrix@ tab#
combined. We will demonstrate the actual temporal int
chain redistribution of excitations for the particular cases
mitting the physical applications.

Thus, puttingM52 andtab5(12dab)t with t to be real
we obtain from Eqs.~1! and ~2! the model of nonlinear in-
termolecular excitations on two-leg ladder lattice closely
lated to that on double helix DNA macromolecule. Th
solving Eq.~17! yields

aa~t!5
1

2 (
b51

2

@eit t1~21!a2be2 i t t#ab~0!, a51,2

~20!

and consequently

aa~t!aa* ~t!

A(
b51

3

ab~0!ab* ~0!

5
1

2
2

~21!a

2
@cos 2f cos~2tt!

1sin~d12d2!sin 2f sin~2tt!],

a51,2, ~21!

where the parametrizationa1(0)5exp(id1)cosf, a2(0)
5exp(id2)sinf has been adopted. From Eq.~21! it is clearly
seen the presence of interchain beating mode redistribu
the excitations between the chains. The beating amplitud
equal toAcos2 2f1sin2(d12d2)sin22f and can be regulated
from zero to unity by means of parametersd1 , d2, andf of
initial transverse distribution. Conversely, the beating f
quencyt/p has the fundamental physical origin and is det
mined exclusively by the interchain linear coupling consta
t regardless to any particular solution. Moreover, the eff
of interchain beating could be observable only in syste
with interchain linear couplings and is principally impo
sible, e.g., in those of Manakov type@8,15,16#.

Now let us consider the case whenM53 and tab
5t exp(2iF/3)D(a2b11)1t exp(iF/3)D(a2b21).
HereD(g) stands for unity if the numberg is equal to zero
or is divisible by three and for zero otherwise. Then atF
50 the model~1! and ~2! describe the chargeless nonline
intramolecular excitations~or charged ones without externa
magnetic field! on a three-leg ladder lattice. This model
closely related to the model established for amid-I exc
tions on aa-helix protein macromolecule@1–3#. When the
quantityF is nonzero it is worthwhile to identify it with the
dimensionless magnetic flux through the triangular area
ment with vortices situated on molecules of the same u
cell,

F5
e

c\
uBuS, ~22!

bearing in mind the most general integrable model
charged excitations on a three-leg lattice structure. HereS is
the area of triangular element just referred to. The magn
field B is supposed to be directed along the positive direct
of discrete longitudinal coordinaten. Solving the evolution
equations~17! gives rise to
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aa~t!5
1

3
exp@2i t t cos~F/3!# (

b51

3

ab~0!1
1

3
exp@2i t t~F/322p/3!# (

b51

3

ab~0!e2p i (a2b)/31
1

3
exp@2i t t~F/312p/3!#

3 (
b51

3

ab~0!e22p i (a2b)/3, a51,2,3. ~23!

In general the corresponding expression for the one-soliton density located on theath chain~19! looks rather cumbersome. S
we prefer to write down a particular one,

aa~t!aa* ~t!

A(
b51

3

ab~0!ab* ~0!

5
1

3
1

2

9
cos@2A3tt sin~F/3!22pa/3#1

2

9
cos@2A3tt sin~p/32F/3!22pa/3#

1
2

9
cos@2A3tt sin~p/31F/3!12pa/3#, a51,2,3, ~24!

when the whole initial soliton density is concentrated on the third chainaa(0)5da3 exp(id3). According to this formula the
transverse redistribution of soliton density is carried out by three circular traveling waves with frequencies regulate
external magnetic field. In general all three modes are different and even incommensurate ones though at certain
values of the magnetic field the effects of two-mode degeneration or two-mode degeneration accompanied by vanish
third mode are possible to observe.

In summary, we have developed the exactly integrable nonlinear model on multileg ladder lattice strongly related to
range of physically important phenomena from nonlinear transport in low-dimensional biological, polymeric, and con
matter systems to electric pulse propagation in nonlinear transmission lines and light pulse propagation in tunn
nonlinearly coupled arrays of optical fibers. In doing so we have suggested the systematic analytical approach suitab
needs of nonlinear physics in more than one spatial dimension and have studied the structure of simplest nonlinear e
on two- and three-leg ladder lattices.

The work has been partially supported by the INTAS Foundation under Grant No. INTAS 96-0158, and by the Uk
State Foundation for Basic Research under Grant No. 2.4/355.
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