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Nonlinear model of intramolecular excitations on a multileg ladder lattice
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The exactly integrable model of nonlinear intramolecular excitations on a multileg ladder lattice is proposed.
Since it is rather general, the model permits a number of physically interesting ramifications related to the
striplike and the bunchlike biological and condensed matter systems as well as to the arrays of linearly and
nonlinearly coupled optical fibers. The principal possibility to model an external magnetic field parallel to the
ladder legs within the framework of inverse scattering transform is pointed out. The one-soliton solutions of
two-leg and three-leg ladder models are found and analyzed. Apart from the spatially constricted translational
mode typical to the traditional one-chain soliton, the interchain beating mode as well as the circular traveling
modes redistributing the excitations between the chains are revealed in complete accordance with liner limits.
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PACS numbgs): 41.20.Jb, 71.3&:i, 11.10.Lm

The models of a nonlinear Schiinger type have played charge in transversely coupled biological macromolecules
an exceptional role in physical applications already for morg 1—3]. Forestalling, in some respect the model has even sur-
than three decades. They arise in rather different physicglassed our expectations though its nonlinear terms turned out
systems where the balance between dispersion and nonlit® be somewhat artificial, as it usually occurred with other
earity produces the fundamental entity known as a solitondiscrete integrable nonlinear modéts$,16,2§. We will dis-

The scope of such models stretches from the transport phéuss all these aspects in context of each particular property of
nomena in low-dimensional biologichl—3] and condensed the model of interest.

matter[3—6] systems to two-dimensional self-focuss[igs] For the sake of definiteness we will follow here the ter-
and one-dimensional self-modulatipf] of light in nonlinear ~ Minology of nonlinear transport phenomena and prescribe
media to say nothing of light pulse propagation in opticalthe quantitiesg,(n) andr,(n) to be the excitation ampli-
fibers [9,10] and electric pulse propagation in nonlinear tudes of molecule sited oath chain andnth unit cell. The
transmission lineg11]. The most intriguing ones are the longitudinal numerical coordinateis supposed to run from
multicomponent nonlinear models supporting ling€a2,13 minus to plus infinity, whereas the transverse androm

or nonlinear[8,9,14 couplings between their components unity to the number of chainflegs M. The exactly inte-
thereby prompting rather sophisticated effects of mode-modgrable evolution model dealing with the nonlinear intramo-
interactions. However, as a rule only some of them are intelecular excitations oM-leg ladder lattice reads as follows:
grable and in particular those admitting equal contributions
from cross-phase and self-phase modulation eff¢8is .
Here, apart from the well-known Manakov mod8], which '%(””ﬁgl tapdp(n) +[de(n+1)+0q,(n—1)]
has served as an integrable model for the so-called incoher-
ent solitons, it is worthwhile to mention that its discretized
multicomponent versions just recently appeared in the litera-
ture [15,16. Though being rare ones the integrable models
when chosen appropriately are often used to be good zero M

approximations as applied to real physical syst¢ins-20. Z Ua(N=1)0g(N) —0u(N)ag(n—1)]r g(n) (1)
At last in the paper§21-24 a number of fairly general =
two-component models closely related to different physical

situations have been considered. Among them we would like .
to stress those dealing with the linear and nonlinear inter- —irg(n)+ 21 Fp(Mtgat[ra(n+1)+r,(n=1)]
component couplings combing@1-23 as the most direct =
continuous prototypes of discrete multicomponent nonlinear
integrable model has to be presented in this Rapid Commu-

M

M
X 1+[3’Zl qB(n)rB(n)}

M

M

X |1+ Z rg(n)gp(n)

nication. M
Thus, the main reason of our activity is to develop a dis-
) ) ; + +
crete nonlinear integrable model pretending to be a zero ap- Z a(NFDrp(n) =ra(n)rg(n+1)]qs(n),
proximation at least for such known physically motivated 2
models as arrays of tunnel-coupled nonlinear optical fibers
[25—-27 or models for transport of excitation energy andwhere «=1,2,3...,M and the interchain linear coupling

constantd , ; are supposed to be arbitrary for the time being.
Here the dot stands for the derivative with respect to dimen-
*Electronic address: vakhnenko@bitp.kiev.ua sionless timer.
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Being rather general the modd)) and(2) permits a num- wave packet occupies two or three unit cells the difference
ber of physically interesting ramifications obtainable bybetween the physical and modeled nonlinearities can be rea-
merely imposing appropriate restrictions on the couplingsonably taken into account by the perturbation technique
constants,;. Thus, we are able to model the nonlinear ex-Similar to that developed in our previous works,18. For
citations on a multileg ladder lattice unrolled into the two- €X@mple, the parameters of Peierls-Nabarro potential relief

. ) : . : P . btained by means of perturbation theddy7,18 for the
dimensional strip or combined into the three d'menS'onaﬁonlinear Davydov-Kyslukha modé#] turned out to be in

punch of tightly bound chains. I\_/Ior_eover, We are in a posi-g g keeping with those calculated numeric4B@|]. More-
tion to apply an external magnetic field parallel to the ladde over, even the so-called intrinsic localized mo@ies, 32,19

legs in a way similar to that described by Feynnja8). have actually been described at first within the framework of
Inspecting the kind of nonlinearity the modéd) and(2)  the perturbation theorl17]. Of course, the effects of strong

possesses we see that it has the thorough physically moliecalization should be treated within the framework of other

vated justification only in continuous limit when the role of approaches, e.g. that worked out by the Spatschek’s team

longitudinal localized modes is negligible. Thus, Mt=2 [33,34.

and the absence of interchain linear couplingg=0 (« Before proceeding with some particular cases of our

# ) we can readily recognize in continuous version of Eqsmodel (1) and(2) we will prove its integrability. Indeed in-

(1) and (2) the famous Manakov mod¢B]. Nevertheless, troducing two auxiliary linear operatots(n|z) and A(n|z)

even at intermediate spatial localization when the nonlineaas

zl  F(n)E
Ln2=| ec(n) z 4 | 3)
izl —iF(N)EEG(n—1)+iT izF(N)E—iz 'F(n—1)E
A(n[2)=| izEG(n—1)—iz 'EG(n) —iz 2 +iEG(n)F(n—1)E | (4)
|
we see that the modéell) and (2) follows from the zero- _ M
curvature condition iq,(n)+ 2 topdp(n)+[du(n+1)+qg,(n—1)]
B=1
) M
L(n|z)=A(n+1|z)L(n|z)—L(n|2)A(n|2), (5) X| 1+ X qa(n)rg(n) =0, (11
B=1
thereby confirming its integrability. Here the quantitie&, ) M
T, andF(n), G(n) stand forM X M submatrixes defined by _ir“(n)+321 Fg(Mtge+[re(n+1)+r,(n=1)]
M
I=[1,p]=[6apl, (6) x| 1+, rﬁ(n)qg(n)}zo, (12
B=1
E=[E.gl=[1], (7) a=123... M.

Provided the matrit,z] is Hermitiantﬁaztzﬁ this last
T=[tasl, (8  model(11) and(12) gains a direct physical implication inas-
much as then its amplitudes could be linked by one of the
reductionsr ,(n)=q%*(n) orr,(n)=—q%(n). Indeed as far
F(n)E[Faﬁ(n)]:[iqa(n)aalg]/\/m, (99  as the initial Eqs(1) and(2) and simplified Eqs(11) and
(12) conserve the quantity,_ ., In[1+2,’}3":1q,3(n)r3(n)] we
can introduce the corrected amplitudes
G(N)=[Gp(M]=[i 84 oM/ VM. (10

In

M
. . . 1+ 2 qﬁm)rB(n)]
A comprehensive analysis handled by the inverse scatter- B=1

ing transform shows that one-soliton amplitudes cancel the ~ Qa(N)=d4(N) M
left-hand terms in Eqg1) and(2) identically and convert the Z qs(n)r 4(n)
initial multileg model(1) and (2) into the more simple one, B=1 p p

, (13
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M where the last step has been assisted by the evolution equa-
Inl 1+ 2 qp(n)rg(n) tions (17) and Hermiticy of interchain coupling matrix , 4]
B=1 combined. We will demonstrate the actual temporal inter-

Ra(n)=r4(n) » (14 chain redistribution of excitations for the particular cases ad-

M

2 qp(N)r 5(n) mitting the physiczil applicatio_ns. _

B=1 Thus, puttingM =2 andt,;=(1— J,,)t with t to be real
we obtain from Eqgs(1) and (2) the model of nonlinear in-

manifesting ar ,(n) =g (n) all necessary features of prob- termolecular excitations on two-leg ladder lattice closely re-

ability amplitudes. Of course, both models can be easily retated to that on double helix DNA macromolecule. Then

formulated in terms ofQ,(n) and R,(n) should the need solving Eq.(17) yields

arise.

In what follows we analyze the amplitudes of the one- 1 2 . e
soliton solution under the restrictiorty,=t%, and r (n) aa(T)IEﬁZl [+ (—1)* Pe ""ag(0), a=12
=q%(n) (the reduced amplitudgs 20

a,(7)shu exdipn—2irchu cosp] and consequently

00 = —

V 2, asrai(netu(n=x-27 sty sinp] a:(ﬂa““) =%—(_21)a[c052¢cos(2tr)
(19 VS ag0)a0)
(16) B=1

+sin(8;— 85)sin 2¢ sin(2t7)],
a=1,.2, (21)

ro(M)=ax(n),
a=123... M.

Here u, p, X, anda,(7) are the constant real and time de- o
pendent complex integration parameters respectively detefthere the parametrizatiora, (0)=exp(d)cos¢, a,(0)
mined through the scattering data of auxiliary spectral prob=€xP(&,)sin¢ has been adopted. From Eg1) itis clearly
lem by some one-to-one relations. In particular the quantitieS€€n the presence of interchain beating mode redistributing
a,(7) should satisfy to the following set of ordinary differ- the excitations betvvgen the chalns. The beating amplitude is
ential equations: equal to\/cos 2¢+sirf(5,— 8,)sinf2¢ and can be regulated
M from zero to unity by means of parametes &,, and ¢ of
: _ _ initial transverse distribution. Conversely, the beating fre-
Aul7) IBZl tegp(7), @=123...M. (17 quencyt/ 7 has the fundamental physical origin and is deter-
mined exclusively by the interchain linear coupling constant
Being the one-soliton ones the amplitudé$) and(16) are  t regardless to any particular solution. Moreover, the effect
applicable to each of modeld), (2), and(11), (12) on an  of interchain beating could be observable only in systems
equal footing. with interchain linear couplings and is principally impos-
Let us clarify the meaning of integration parameters.sible, e.g., in those of Manakov tyf8,15,16.
Thus, the coordinatg turns out to be the mean longitudinal  Now let us consider the case whévi=3 and tap
coordinate of soliton distribution due to the fact that the =t exp(—id®/3)A(a—B+1)+texp(®/3)A(a—B—1).
identity HereA(y) stands for unity if the numbey is equal to zero
Moo or is divisible by three and for zero otherwise. Thendat
E E nQ,(nN)R,(n) =0 the model(1) and(2) describe the chargeless nonlinear
- - _ (18) intramolecular excitationgor charged ones without external
magnetic field on a three-leg ladder lattice. This model is
> ; Qu(MR,(N) closely related to the model established for amid-I excita-
tions on aa-helix protein macromoleculgl—3]. When the
when calculated on the one-soliton amplitud&s) and (16) guantity® is nonzero it is worthwhile to identify it with the
is fulfilled. Further, the quantity 2(ghsinp)/u gives the dimensionless magnetic flux through the triangular area ele-
soliton longitudinal velocity while the quantity 4/deter- ~ment with vortices situated on molecules of the same unit
mines the typical longitudinal size of soliton distribution. At cell,
last the amplitudes,(7) («=1,2,3 ... ,M) describe the
temporal transverse redistribution of soliton density. Indeed, b= £|B|S (22)
the fraction of one-soliton density located on taid chain in ch '
accordance with Eq$15), (16), and(13), (14) is found to be

i
<

bearing in mind the most general integrable model of

Q.(NR,(N) a,(ma*(7) a,(ma*(r) charged excitations on a three-leg lattice structure. t$ase
M =W =M , the area of triangular element just referred to. The magnetic
MRA(N a a* a.(0)a*(0 field B is supposed to be directed along the positive direction

/321 Qu(MRs(N) 321 o725 (7) ,521 5(0)35(0) of discrete longitudinal coordinate Solving the evolution

(19 equationg17) gives rise to
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1 ) 1 ) o 1 )
aa(r)=§exp{2|trcos(<l>/3)]2 aB(O)+§exp[2|tr(<l>/3—27r/3)]Z ag(0)e?™ (@ ﬁ)’3+§exp{2|tr(¢/3+27-r/3)]
p=1 B=1

3
X X, ag(0)e 2m@=AB =123
B=1

(23)

In general the corresponding expression for the one-soliton density located ethtbleain(19) looks rather cumbersome. So

we prefer to write down a particular one,

1 2

a,(7may(7)

3
\ gl ag(0)a}(0)

+gcod2 J3trsin(m/3+®/3)+ 27 al3],

2
3 +§cos{2\/§trsir(d>/3) —27al3] +§cos{2@wsin(w/3— ®/3)— 27 al3]

a=1,2,3, (24

when the whole initial soliton density is concentrated on the third cha{®)= 6,3 exp(ds). According to this formula the
transverse redistribution of soliton density is carried out by three circular traveling waves with frequencies regulated by an
external magnetic field. In general all three modes are different and even incommensurate ones though at certain particular
values of the magnetic field the effects of two-mode degeneration or two-mode degeneration accompanied by vanishing of the

third mode are possible to observe.

In summary, we have developed the exactly integrable nonlinear model on multileg ladder lattice strongly related to a wide
range of physically important phenomena from nonlinear transport in low-dimensional biological, polymeric, and condensed
matter systems to electric pulse propagation in nonlinear transmission lines and light pulse propagation in tunnel- and
nonlinearly coupled arrays of optical fibers. In doing so we have suggested the systematic analytical approach suitable for the
needs of nonlinear physics in more than one spatial dimension and have studied the structure of simplest nonlinear excitations

on two- and three-leg ladder lattices.
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